The multiple and complex and changeable scenarios of the Trypanosoma cruzi transmission cycle in the sylvatic environment

Acta Trop. 2015 Nov:151:1-15. doi: 10.1016/j.actatropica.2015.07.018. Epub 2015 Jul 19.

Abstract

In this study, we report and discuss the results generated from over 20 years of studies of the Trypanosoma cruzi sylvatic transmission cycle. Our results have uncovered new aspects and reviewed old concepts on issues including reservoirs, true generalist species, association of mammalian species with distinct discrete typing units - DTUs, distribution of T. cruzi genotypes in the wild, mixed infections, and T. cruzi transmission ecology. Using parasitological and serological tests, we examined T. cruzi infection in 7,285 mammalian specimens from nine mammalian orders dispersed all over the Brazilian biomes. The obtained T. cruzi isolates were characterized by mini-exon gene sequence polymorphism and PCR RFLP to identify DTUs. Infection by T. cruzi was detected by serological methods in 20% of the examined animals and isolated from 41% of those infected, corresponding to 8% of all the examined mammals. Each mammal taxon responded uniquely to T. cruzi infection. Didelphis spp. are able to maintain high and long-lasting parasitemias (positive hemocultures) caused by TcI but maintain and rapidly control parasitemias caused by TcII to almost undetectable levels. In contrast, the tamarin species Leontopithecus rosalia and L. chrysomelas maintain long-lasting and high parasitemias caused by TcII similarly to Philander sp. The coati Nasua nasua maintains high parasitemias by both parental T. cruzi DTUs TcI or TcII and by TcII/TcIV (formerly Z3) at detectable levels. Wild and domestic canidae seem to display only a short period of reservoir competence. T. cruzi infection was demonstrated in the wild canid species Cerdocyon thous and Chrysocyon brachyurus, and positive hemoculture was obtained in one hyper carnivore species (Leopardus pardalis), demonstrating that T. cruzi transmission is deeply immersed in the trophic net. T. cruzi DTU distribution in nature did not exhibit any association with a particular biome or habitat. TcI predominates throughout (58% of the T. cruzi isolates); however, in spite of being significantly less frequent (17%), TcII is also widely distributed. Concomitant DTU infection occurred in 16% of infected mammals of all biomes and included arboreal and terrestrial species, as well as bats. TcI/TcII concomitant infection was the most common and widely dispersed, with mixed TcI/TcII infections especially common in coatis and in Didelphimorphia. The second most common pattern of concomitant infection was TcI/TcIV, observed in Chiroptera, Didelphimorphia and Primates. Taken together, our results demonstrate the complexity of T. cruzi reservoir system and its transmission strategies, indicating that there is considerably more to be learned regarding ecology of T. cruzi.

Keywords: DTU; Ecology of parasites; Reservoirs; Transmission cycles; Trypanosoma cruzi.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Brazil / epidemiology
  • Chagas Disease / epidemiology
  • Chagas Disease / parasitology*
  • Chagas Disease / transmission*
  • Disease Vectors*
  • Ecosystem
  • Life Cycle Stages*
  • Mammals / parasitology*
  • Prevalence
  • Trees
  • Tropical Climate
  • Trypanosoma cruzi*