Thermal treatment of magnetite nanoparticles

Beilstein J Nanotechnol. 2015 Jun 23:6:1385-96. doi: 10.3762/bjnano.6.143. eCollection 2015.

Abstract

This paper presents the results of a thermal treatment process for magnetite nanoparticles in the temperature range of 50-500 °C. The tested magnetite nanoparticles were synthesized using three different methods that resulted in nanoparticles with different surface characteristics and crystallinity, which in turn, was reflected in their thermal durability. The particles were obtained by coprecipitation from Fe chlorides and decomposition of an Fe(acac)3 complex with and without a core-shell structure. Three types of ferrite nanoparticles were produced and their thermal stability properties were compared. In this study, two sets of unmodified magnetite nanoparticles were used where crystallinity was as determinant of the series. For the third type of particles, a Ag shell was added. By comparing the coated and uncoated particles, the influence of the metallic layer on the thermal stability of the nanoparticles was tested. Before and after heat treatment, the nanoparticles were examined using transmission electron microscopy, IR spectroscopy, differential scanning calorimetry, X-ray diffraction and Mössbauer spectroscopy. Based on the obtained results, it was observed that the fabrication methods determine, to some extent, the sensitivity of the nanoparticles to external factors.

Keywords: IR spectroscopy; Mössbauer spectroscopy; X-ray diffraction; high temperature corrosion; internal oxidation; metal matrix composites.