Dynamic imaging of Au-nanoparticles via scanning electron microscopy in a graphene wet cell

Nanotechnology. 2015 Aug 7;26(31):315703. doi: 10.1088/0957-4484/26/31/315703. Epub 2015 Jul 16.

Abstract

High resolution nanoscale imaging in liquid environments is crucial for studying molecular interactions in biological and chemical systems. In particular, electron microscopy is the gold-standard tool for nanoscale imaging, but its high-vacuum requirements make application to in-liquid samples extremely challenging. Here we present a new graphene based wet cell device where high resolution scanning electron microscope (SEM) and energy dispersive x-rays (EDX) analysis can be performed directly inside a liquid environment. Graphene is an ideal membrane material as its high transparancy, conductivity and mechanical strength can support the high vacuum and grounding requirements of a SEM while enabling maximal resolution and signal. In particular, we obtain high resolution ([Formula: see text] nm) SEM video images of nanoparticles undergoing Brownian motion inside the graphene wet cell and EDX analysis of nanoparticle composition in the liquid enviornment. Our obtained resolution surpasses current conventional silicon nitride devices imaged in both a SEM and transmission electron microscope under much higher electron doses.

Publication types

  • Research Support, Non-U.S. Gov't