Diameter-Specific Growth of Semiconducting SWNT Arrays Using Uniform Mo2C Solid Catalyst

J Am Chem Soc. 2015 Jul 22;137(28):8904-7. doi: 10.1021/jacs.5b05384. Epub 2015 Jul 14.

Abstract

Semiconducting single-walled nanotube (s-SWNT) arrays with specific diameters are urgently demanded in the applications in nanoelectronic devices. Herein, we reported that by using uniform Mo2C solid catalyst, aligned s-SWNT (∼90%) arrays with narrow-diameter distribution (∼85% between 1.0 and 1.3 nm) on quartz substrate can be obtained. Mo2C nanoparticles with monodisperse sizes were prepared by using molybdenum oxide-based giant clusters, (NH4)42[Mo132O372(H3CCOO)30(H2O)72]·10H3CCOONH4·300H2O(Mo132), as the precursor that was carburized by a gas mixture of C2H5OH/H2 during a temperature-programmed reduction. In this approach, the formation of volatile MoO3 was inhibited due to the annealing and reduction at a low temperature. As a result, uniform Mo2C nanoparticles are formed, and their narrow size-dispersion strictly determines the diameter distribution of SWNTs. During the growth process, Mo2C selectively catalyzes the scission of C-O bonds of ethanol molecules, and the resultant absorbed oxygen (Oads) preferentially etches metallic SWNTs (m-SWNTs), leading to the high-yield of s-SWNTs. Raman spectroscopic analysis showed that most of the s-SWNTs can be identified as (14, 4), (13, 6), or (10, 9) tubes. Our findings open up the possibility of the chirality-controlled growth of aligned-SWNTs using uniform carbide nanoparticles as solid catalysts for practical nanoelectronics applications.