Nanofibrillated Cellulose and Copper Nanoparticles Embedded in Polyvinyl Alcohol Films for Antimicrobial Applications

Biomed Res Int. 2015:2015:456834. doi: 10.1155/2015/456834. Epub 2015 Jun 2.

Abstract

Our long-term goal is to develop a hybrid cellulose-copper nanoparticle material as a functional nanofiller to be incorporated in thermoplastic resins for efficiently improving their antimicrobial properties. In this study, copper nanoparticles were first synthesized through chemical reduction of cupric ions on TEMPO nanofibrillated cellulose (TNFC) template using borohydride as a copper reducing agent. The resulting hybrid material was embedded into a polyvinyl alcohol (PVA) matrix using a solvent casting method. The morphology of TNFC-copper nanoparticles was analyzed by transmission electron microscopy (TEM); spherical copper nanoparticles with average size of 9.2 ± 2.0 nm were determined. Thermogravimetric analysis and antimicrobial performance of the films were evaluated. Slight variations in thermal properties between the nanocomposite films and PVA resin were observed. Antimicrobial analysis demonstrated that one-week exposure of nonpathogenic Escherichia coli DH5α to the nanocomposite films results in up to 5-log microbial reduction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Infective Agents / administration & dosage*
  • Anti-Infective Agents / chemistry
  • Cellulose / administration & dosage*
  • Cellulose / chemistry
  • Copper / administration & dosage
  • Copper / chemistry
  • Escherichia coli / drug effects
  • Humans
  • Metal Nanoparticles / administration & dosage*
  • Metal Nanoparticles / chemistry
  • Microbial Sensitivity Tests
  • Polyvinyl Alcohol / chemistry
  • Staphylococcus aureus / drug effects

Substances

  • Anti-Infective Agents
  • Copper
  • Polyvinyl Alcohol
  • Cellulose