[In Situ Analysis of Element Geochemistry in Submarine Basalt in Hydrothermal Areas from Ultraslow Spreading Southwest Indian Ridge]

Guang Pu Xue Yu Guang Pu Fen Xi. 2015 Mar;35(3):796-802.
[Article in Chinese]

Abstract

In this study, we analyze element geochemistry of submarine basalt in situ, which is sampled in hydrothermal areas from ultraslow spreading Southwest Indian Ridge, including the fresh basalt rocks (B19-9, B15-13) and altered basalt (B5-2). And we can confirm that altered mineral in B5-2 is celadonite by microscope and Raman Spectrum. Furthermore, amygdaloidal celadonites are analyzed by electron microprobe (EPMA) and EDS-line scanning. The results show that K-contents decrease and Na-contents increase from the core to the edge in these altered minerals, indicating the transition from celadonite to saponite. Celadonite is an altered minerals, forming in low temperature (< 50 degrees C) and oxidizing condition, while saponite form in low water/rock and more reducing condition. As a result, the transition from celadonite to saponite suggests environment change from oxidizing to reducing condition. Using the result of EPMA as internal standard, we can analyze rare earth elements (REE) in altered mineral in situ. Most of result show positive Eu anomaly (Δ(Eu)), indicating hydrothermal fluid transform from oxidizing to reducing, and reducing fluid rework on the early altered minerals. Comparison with REE in matrix feldspar both in altered and unaltered zoning, we find that reducing fluid can leach REE from the matrix feldspar, leading to lower total REE concentrations and positive Eu anomaly. So leaching process play an important role in hydrothermal system.

Publication types

  • English Abstract