Composition of Bacterial Communities Associated with Aurelia aurita Changes with Compartment, Life Stage, and Population

Appl Environ Microbiol. 2015 Sep 1;81(17):6038-52. doi: 10.1128/AEM.01601-15. Epub 2015 Jun 26.

Abstract

The scyphozoan Aurelia aurita is recognized as a key player in marine ecosystems and a driver of ecosystem change. It is thus intensely studied to address ecological questions, although its associations with microorganisms remain so far undescribed. In the present study, the microbiota associated with A. aurita was visualized with fluorescence in situ hybridization (FISH) analysis, and community structure was analyzed with respect to different life stages, compartments, and populations of A. aurita by 16S rRNA gene amplicon sequencing. We demonstrate that the composition of the A. aurita microbiota is generally highly distinct from the composition of communities present in ambient water. Comparison of microbial communities from different developmental stages reveals evidence for life stage-specific community patterns. Significant restructuring of the microbiota during strobilation from benthic polyp to planktonic life stages is present, arguing for a restructuring during the course of metamorphosis. Furthermore, the microbiota present in different compartments of the adult medusa (exumbrella mucus and gastric cavity) display significant differences, indicating body part-specific colonization. A novel Mycoplasma strain was identified in both compartment-specific microbiota and is most likely present inside the epithelium as indicated by FISH analysis of polyps, indicating potential endosymbiosis. Finally, comparison of polyps of different populations kept under the same controlled laboratory conditions in the same ambient water showed population-specific community patterns, most likely due the genetic background of the host. In conclusion, the presented data indicate that the associated microbiota of A. aurita may play important functional roles, e.g., during the life cycle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification*
  • DNA, Bacterial / genetics
  • In Situ Hybridization, Fluorescence
  • Microbiota
  • Molecular Sequence Data
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Scyphozoa / growth & development*
  • Scyphozoa / microbiology*

Substances

  • DNA, Bacterial
  • RNA, Ribosomal, 16S

Associated data

  • GENBANK/KP299289
  • SRA/SRP049658