Spectral Diversity and Regulation of Coral Fluorescence in a Mesophotic Reef Habitat in the Red Sea

PLoS One. 2015 Jun 24;10(6):e0128697. doi: 10.1371/journal.pone.0128697. eCollection 2015.

Abstract

The phenomenon of coral fluorescence in mesophotic reefs, although well described for shallow waters, remains largely unstudied. We found that representatives of many scleractinian species are brightly fluorescent at depths of 50-60 m at the Interuniversity Institute for Marine Sciences (IUI) reef in Eilat, Israel. Some of these fluorescent species have distribution maxima at mesophotic depths (40-100 m). Several individuals from these depths displayed yellow or orange-red fluorescence, the latter being essentially absent in corals from the shallowest parts of this reef. We demonstrate experimentally that in some cases the production of fluorescent pigments is independent of the exposure to light; while in others, the fluorescence signature is altered or lost when the animals are kept in darkness. Furthermore, we show that green-to-red photoconversion of fluorescent pigments mediated by short-wavelength light can occur also at depths where ultraviolet wavelengths are absent from the underwater light field. Intraspecific colour polymorphisms regarding the colour of the tissue fluorescence, common among shallow water corals, were also observed for mesophotic species. Our results suggest that fluorescent pigments in mesophotic reefs fulfil a distinct biological function and offer promising application potential for coral-reef monitoring and biomedical imaging.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / physiology*
  • Anthozoa / radiation effects
  • Biodiversity
  • Color
  • Coral Reefs*
  • Ecosystem
  • Fluorescence*
  • Indian Ocean
  • Israel
  • Light
  • Pigments, Biological / biosynthesis
  • Pigments, Biological / chemistry*

Substances

  • Pigments, Biological

Grants and funding

GE was supported by the Israel Taxonomy Initiative (ITI) and Sciences-based Management (SBM) doctoral Fellowships (http://taxonomy.tau.ac.il/en/). YL acknowledges funding by the Israel Science Foundation (ISF) (http://www.isf.org.il) grant No. 341/12, USAID/MERC grant No. M32-037, The Israel Ministry of Environmental Protection (MoEP) (http://www.sviva.gov.il/english/pages/homepage.aspx) and the Israel Nature and Parks Authority (INPA) (http://www.parks.org.il/parks/Pages/WhoWeAre.aspx). JW/CDA acknowledge funding from Natural Environment Research Council (http://www.nerc.ac.uk/) (NE/I01683X/1, NE/I01683X/1 & NE/I012648/1), Deutsche Forschungsgemeinschaft (DFG) (http://www.dfg.de/en/) (Wi1990/2-1), ASSEMBLE and the European Research Council (http://erc.europa.eu/) under the European Union’s Seventh Framework Programme (ERC Grant Agreement no. 311179) and support from Tropical Marine Centre (TMC) London (http://www.tropicalmarinecentre.co.uk/en/index.aspx). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.