Rapid and selective manipulation of milk fatty acid composition in mice through the maternal diet during lactation

J Nutr Sci. 2015 May 6:4:e19. doi: 10.1017/jns.2015.13. eCollection 2015.

Abstract

Dietary fatty acid (FA) composition in early postnatal life can modulate growth and development and later metabolic health. Investigating programming effects of early dietary FA manipulations in rodents may be stressful and complicated due to the need of artificial feeding techniques. It is largely unknown to what extent breast milk (BM) FA composition can be directly manipulated by the diet. We exposed dams to different dietary FA compositions from postnatal day (PN) 2 until PN28. Dams with litters were randomly assigned to control (CTRL), high-medium-chain FA (MCFA), low-linoleic acid (LowLA), high-n-3 long-chain PUFA (n-3LCP) or high-n-3LCP and MCFA (n-3LCP/MCFA) diets, and diets were continued after weaning until PN28. FA compositions were determined in feeds, milk and in erythrocytes. BM MCFA content was independent from dietary MCFA intake. In contrast, the LowLA diet reduced BM LA content by about 50 % compared with the CTRL diet at PN7. BM of dams fed the n-3LCP or n-3LCP/MCFA diet contained about 6-fold more n-3 LCP than BM of the dams fed the CTRL diet at PN7. These changes in milk FA composition established after 5 d of dietary exposure did not further change over the lactation period. At PN28, the erythrocyte FA composition of the male pups correlated with analysed milk FA profiles. In conclusion, manipulation of the diet of lactating mice can strongly and rapidly affect BM FA composition, in particular of n-6 LA and n-3 LCP. Our present findings will facilitate mechanistic studies on the programming of adult metabolic health by dietary FA in the early postnatal period via direct and selective manipulation of the maternal diet.

Keywords: ALA, α-linolenic acid; ARA, arachidonic acid; CTRL, control; Dietary fat quality; FA, fatty acid; LA, linoleic acid; LCP, long-chain PUFA; LowLA, low linoleic acid; MCFA, medium-chain fatty acid; Milk fatty acid composition; Mouse models; PN , postnatal day; n-3LCP, n-3 long-chain PUFA.