High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 °C

Nat Commun. 2015 Jun 22:6:7410. doi: 10.1038/ncomms8410.

Abstract

Fabricating inorganic-organic hybrid perovskite solar cells (PSCs) on plastic substrates broadens their scope for implementation in real systems by imparting portability, conformability and allowing high-throughput production, which is necessary for lowering costs. Here we report a new route to prepare highly dispersed Zn2SnO4 (ZSO) nanoparticles at low-temperature (<100 °C) for the development of high-performance flexible PSCs. The introduction of the ZSO film significantly improves transmittance of flexible polyethylene naphthalate/indium-doped tin oxide (PEN/ITO)-coated substrate from ∼75 to ∼90% over the entire range of wavelengths. The best performing flexible PSC, based on the ZSO and CH3NH3PbI3 layer, exhibits steady-state power conversion efficiency (PCE) of 14.85% under AM 1.5G 100 mW·cm(-2) illumination. This renders ZSO a promising candidate as electron-conducting electrode for the highly efficient flexible PSC applications.