Electrochemical detection of nitrate in PM2.5 with a copper-modified carbon fiber micro-disk electrode

Talanta. 2015 Oct 1:143:245-253. doi: 10.1016/j.talanta.2015.04.049. Epub 2015 Apr 27.

Abstract

The accurate measurement of nitrate in PM2.5 is essential for a complete understanding of the effects of aerosols on human health, the impact of aerosols on the radiative balance of the earth and the role of aerosols in visibility problems. In this paper, we present a novel, quick, easy, cheap and eco-friendly electroanalytical procedure for the determination of nitrate in PM2.5 samples using a carbon-fiber micro-disk electrode (CFMDE) coupled with square-wave voltammetry (SWV). Under optimal experimental conditions the nitrate SWV response increases linearly with nitrate concentration over a range of 0.003-2.0 mmol L(-1), and the detection limit is 1.10 μmol L(-1) (S/N=3). Nitrate contents in daily PM2.5 of Yangzhou in China were detected successfully by employing this novel method, and the results were compared well with those obtained by using ion chromatography. Then, we detected nitrate in two-hour PM2.5 filter samples via the standard addition method, and the concentrations were applied in an analysis of the daily change of nitrate contained in PM2.5 of Yangzhou. The research in this work indicates that the electrochemical method opens a new opportunity for fast, portable, and sensitive analysis of components in PM2.5.

Keywords: Carbon fiber; Copper-modified; Electrochemical detection; Nitrate; PM(2.5).