The Corrole Radical

Angew Chem Int Ed Engl. 2015 Jul 6;54(28):8213-6. doi: 10.1002/anie.201503624. Epub 2015 Jun 12.

Abstract

The reaction of 5,10,15-trimesitylcorrole (H3 cor) with tungsten hexachloride and tungsten hexacarbonyl resulted in the unexpected formation of the 3,17-dichloro-5,10,15-trimesitylcorrole radical (H2 cor*) as an air-stable product. X-ray crystallography proved the planarization of the corrole radical structure, which was rationalized by the reduced steric hindrance of two versus three hydrogen atoms inside the N4 cavity. Although the aromaticity was lost, no specific changes in C-C or C-N bond distances could be observed. The regioselectivity of the two-fold chlorination is the result of the nucleophilic attack of chloride ions to an oxidized corrole macrocycle, and is supported by DFT results. The corrole radical acts as a dianionic ligand and allows the insertion of the divalent zinc(II) cation, which usually does not form neutral corrole complexes.

Keywords: corroles; macrocycles; nitrogen ligands; porphyrinoids; radical.