The Limits of Lamellae-Forming PS-b-PMMA Block Copolymers for Lithography

ACS Nano. 2015 Jul 28;9(7):7506-14. doi: 10.1021/acsnano.5b02613. Epub 2015 Jun 18.

Abstract

We explore the lithographic limits of lamellae-forming PS-b-PMMA block copolymers by performing directed self-assembly and pattern transfer on a range of PS-b-PMMA materials having a full pitch from 27 to 18.5 nm. While directed self-assembly on chemical contrast patterns was successful with all the materials used in this study, clean removal of PMMA domains and subsequent pattern transfer could only be sustained down to 22 nm full pitch. We attribute this limitation to the width of the interface, which may represent more than half of the domain width for materials with a critical dimension below 10 nm. With the limit of pattern transfer for PS-b-PMMA set at ∼11 nm, we propose an integration scheme suitable for bit patterned media for densities above 1.6 Tdot/in(2), which require features below this limit. Directed self-assembly was carried out on chemical contrast patterns made by a rotary e-beam lithography system, and pattern transfer was carried out to demonstrate fabrication of large area (up to 25 mm-wide annular band of circular tracks) nanoimprint templates for bit patterned media. We also demonstrate compatibility with hard disk drive architecture by fabricating patterns with skewed radial lines with constant angular pitch and with servo patterns that are needed in hard disk drives to generate a radial positional error signal (PES).

Keywords: PS-b-PMMA; bit-patterned media; block copolymer lithography; lamellae; nanoimprint template fabrication; pattern transfer; rotary e-beam lithography.