Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations

Glob Chang Biol. 2015 Nov;21(11):4265-77. doi: 10.1111/gcb.12996. Epub 2015 Sep 28.

Abstract

Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2) s(-1) , control: 2.34 ± 0.29 μmol m(-2) s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils.

Keywords: enzyme activities; gross N mineralization; soil CO2 efflux; soil warming; substrate use efficiency; thermal adaptation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acclimatization
  • Austria
  • Carbon Dioxide / metabolism*
  • Forests
  • Global Warming*
  • Nitrogen / metabolism*
  • Seasons
  • Soil / chemistry*
  • Soil Microbiology*

Substances

  • Soil
  • Carbon Dioxide
  • Nitrogen