Nanoparticles Affect PCR Primarily via Surface Interactions with PCR Components: Using Amino-Modified Silica-Coated Magnetic Nanoparticles as a Main Model

ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13142-53. doi: 10.1021/am508842v. Epub 2015 Jun 9.

Abstract

Nanomaterials have been widely reported to affect the polymerase chain reaction (PCR). However, many studies in which these effects were observed were not comprehensive, and many of the proposed mechanisms have been primarily speculative. In this work, we used amino-modified silica-coated magnetic nanoparticles (ASMNPs, which can be collected very easily using an external magnetic field) as a model and compared them with gold nanoparticles (AuNPs, which have been studied extensively) to reveal the mechanisms by which nanoparticles affect PCR. We found that nanoparticles affect PCR primarily by binding to PCR components: (1) inhibition, (2) specifity, and (3) efficiency and yield of PCR are impacted. (1) Excess nanomaterials inhibit PCR by adsorbing to DNA polymerase, Mg(2+), oligonucleotide primers, or DNA templates. Nanoparticle surface-active groups are particularly important to this effect. (2, a) Nanomaterials do not inhibit nonspecific amplification products caused by false priming as previously surmised. It was shown that relatively low concentrations of nanoparticles inhibited the amplification of long amplicons, and increasing the amount of nanoparticles inhibited the amplification of short amplicons. This concentration phenomenon appears to be the result of the formation of "joints" upon the adsorption of ASMNPs to DNA templates. (b) Nanomaterials are able to inhibit nonspecific amplification products due to incomplete amplification by preferably adsorbing single-stranded incomplete amplification products. (3) Some types of nanomaterials, such as AuNPs, enhance the efficiency and yield of PCR because these types of nanoparticles can adsorb to single-stranded DNA more strongly than to double-stranded DNA. This behavior assists in the rapid and thorough denaturation of double-stranded DNA templates. Therefore, the interaction between the surface of nanoparticles and PCR components is sufficient to explain most of the effects of nanoparticles on PCR.

Keywords: amino-modified silica-coated magnetic nanoparticles; effect; gold nanoparticles; nanomaterials; polymerase chain reaction.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • DNA / analysis
  • DNA / genetics
  • Gold / chemistry
  • Humans
  • Magnetite Nanoparticles / chemistry*
  • Polymerase Chain Reaction / methods*
  • Sensitivity and Specificity
  • Silicon Dioxide / chemistry*
  • Staphylococcus aureus / genetics
  • Surface Properties

Substances

  • Magnetite Nanoparticles
  • Gold
  • Silicon Dioxide
  • DNA