Moiré Nanosphere Lithography

ACS Nano. 2015 Jun 23;9(6):6031-40. doi: 10.1021/acsnano.5b00978. Epub 2015 Jun 2.

Abstract

We have developed moiré nanosphere lithography (M-NSL), which incorporates in-plane rotation between neighboring monolayers, to extend the patterning capability of conventional nanosphere lithography (NSL). NSL, which uses self-assembled layers of monodisperse micro/nanospheres as masks, is a low-cost, scalable nanofabrication technique and has been widely employed to fabricate various nanoparticle arrays. Combination with dry etching and/or angled deposition has greatly enriched the family of nanoparticles NSL can yield. In this work, we introduce a variant of this technique, which uses sequential stacking of polystyrene nanosphere monolayers to form a bilayer crystal instead of conventional spontaneous self-assembly. Sequential stacking leads to the formation of moiré patterns other than the usually observed thermodynamically stable configurations. Subsequent O2 plasma etching results in a variety of complex nanostructures. Using the etched moiré patterns as masks, we have fabricated complementary gold nanostructures and studied their optical properties. We believe this facile technique provides a strategy to fabricate complex nanostructures or metasurfaces.

Keywords: metasurface; moiré nanosphere lithography; moiré pattern; nanosphere lithography; plasmon; sequential stacking.

Publication types

  • Research Support, Non-U.S. Gov't