Selected adjunct cultures remarkably increase the content of bioactive peptides in Bulgarian white brined cheese

Biotechnol Biotechnol Equip. 2015 Jan 2;29(1):78-83. doi: 10.1080/13102818.2014.969918. Epub 2014 Oct 28.

Abstract

Some lactic acid bacteria strains in milk media are capable of releasing bioactive peptides. In this study, we evaluated the angiotensin-converting enzyme (ACE)inhibitory activity of 180 lactic acid bacteria and selected several Lactobacillus helveticus, L. delbrueckii subsp. bulgaricus and L. casei strains that demonstrated strong ACE-inhibitory activity. The aim was to carry out a molecular study on the bioactive peptides released by the strains with the best ACE-inhibitory properties and by the strains demonstrating a calcium-binding effect. To the best of our knowledge, this is the first study of bioactive peptides in Bulgarian white cheese. Peptides with the strongest ACE-inhibitory activity were purified and sequenced. The strains were assessed for production of peptides with calcium-binding properties. These peptides were isolated, purified and sequenced. Two strains releasing bioactive peptides with the strongest ACE-inhibitory and calcium-binding activities were selected for development of cheese starters. The strain with the best ACE-inhibitory activity was L. helveticus A1, which releases the peptide Ala-Leu-Pro-Met as a main contributor to the ACE inhibition. The strain with the best calcium-binding activity was L. casei C3 releasing the peptide SpLSpSpSpE (fraction 15-20 of ß-casein) as a main contributor to calcium binding. After pilot production of cheeses with the developed starters, the ACE-inhibitory and calcium-binding effects were confirmed during the cheese ripening. The addition of the two selected adjunct cultures led to increased production of bioactive peptides in the cheese. In this way, it is possible to increase the functional properties of Bulgarian white brined cheese.

Keywords: ACE-inhibition; anti-hypertensive peptides; calcium-binding.

Grants and funding

This work was supported by the Bulgarian National Innovation Fund [grant number 6IF-02-33].