RecBCD is required to complete chromosomal replication: Implications for double-strand break frequencies and repair mechanisms

DNA Repair (Amst). 2015 Aug:32:86-95. doi: 10.1016/j.dnarep.2015.04.018. Epub 2015 May 2.

Abstract

Several aspects of the mechanism of homologous double-strand break repair remain unclear. Although intensive efforts have focused on how recombination reactions initiate, far less is known about the molecular events that follow. Based upon biochemical studies, current models propose that RecBCD processes double-strand ends and loads RecA to initiate recombinational repair. However, recent studies have shown that RecBCD plays a critical role in completing replication events on the chromosome through a mechanism that does not involve RecA or recombination. Here, we examine several studies, both early and recent, that suggest RecBCD also operates late in the recombination process - after initiation, strand invasion, and crossover resolution have occurred. Similar to its role in completing replication, we propose a model in which RecBCD is required to resect and resolve the DNA synthesis associated with homologous recombination at the point where the missing sequences on the broken molecule have been restored. We explain how the impaired ability to complete chromosome replication in recBC and recD mutants is likely to account for the loss of viability and genome instability in these mutants, and conclude that spontaneous double-strand breaks and replication fork collapse occur far less frequently than previously speculated.

Keywords: Double-strand break repair; Homologous recombination; RecBCD; Replication completion.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Chromosomes, Bacterial / chemistry
  • Chromosomes, Bacterial / metabolism*
  • DNA Breaks, Double-Stranded
  • DNA Replication
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / metabolism*
  • Escherichia coli / genetics*
  • Escherichia coli / metabolism
  • Escherichia coli Proteins / genetics
  • Escherichia coli Proteins / metabolism
  • Exodeoxyribonuclease V / genetics*
  • Exodeoxyribonuclease V / metabolism
  • Gene Expression Regulation, Bacterial*
  • Genomic Instability
  • Homologous Recombination
  • Rec A Recombinases / genetics
  • Rec A Recombinases / metabolism
  • Recombinational DNA Repair*
  • Signal Transduction

Substances

  • DNA, Bacterial
  • Escherichia coli Proteins
  • Rec A Recombinases
  • Exodeoxyribonuclease V
  • exodeoxyribonuclease V, E coli