Optimization of multipollutant air quality management strategies: A case study for five cities in the United States

J Air Waste Manag Assoc. 2015 Jun;65(6):732-42. doi: 10.1080/10962247.2015.1014073.

Abstract

Developing regional air quality management strategies is a difficult task because formation of air pollutants is interdependent and air quality at different locations may have different responses to emissions from common sources. We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identifications of least-cost control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. To implement OPERA, first, sensitivities of air quality to precursor emission changes are quantified. Second, cost functions of emission reductions are estimated using a cost analysis tool that includes a pool of available control measures. The third step is to determine desired reductions in concentrations of air pollutants. The last step is to identify the optimal control strategies by minimizing costs of emission controls using the sensitivities of air pollutants to emission changes, cost functions, and constraints for feasible emission reduction ratios. A case study that investigates ozone and PM2.5 air quality in the summer of 2007 for five major cities in the eastern United States is presented in this paper. The results of the OPERA calculations show that reductions in regional NOx and VOC as well as local primary PM2.5 emissions were more cost-effective than SO2 controls for decreasing ozone and total PM2.5 concentrations in the summer of 2007. This was because reductions in SO2 emissions would only decrease PM2.5 concentrations, and reductions in primary PM2.5 emissions were more cost-effective than SO2 emission controls.

Implications: We developed an optimization-based model, OPtimal integrated Emission Reduction Alternatives (OPERA), which allows for identification of least-cost emission control strategies for attaining multipollutant air quality targets at multiple locations simultaneously. A major strength of OPERA is its flexibility, which allows for changes in air quality regulations, involving agencies, study regions, and so on, to be readily incorporated. Overall, it has been demonstrated that OPERA is useful in developing least-cost emission control strategies for achieving multipollutant air quality targets at multiple locations simultaneously and could be useful for policymakers developing integrated air quality management plans.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / analysis*
  • Air Pollution / analysis
  • Air Pollution / economics
  • Air Pollution / prevention & control*
  • Cities*
  • Environmental Monitoring*
  • Models, Theoretical
  • Ozone / analysis*
  • Particulate Matter / analysis*
  • United States

Substances

  • Air Pollutants
  • Particulate Matter
  • Ozone