Solution-processed silver nanowire/indium-tin-oxide nanoparticle hybrid transparent conductors with high thermal stability

J Nanosci Nanotechnol. 2014 Dec;14(12):9504-9. doi: 10.1166/jnn.2014.10158.

Abstract

In this study, solution-processed hybrid structure transparent conductors consisting of silver nanowires (AgNWs) and indium-tin-oxide nanoparticle (ITO-NP) layers are investigated. Fabricated transparent conductors had stacked structures of ITO-NP/AgNW and ITO-NP/AgNW/ITO-NP, and a successful integration was possible on glass substrates. Compared to a single-layered ITO-NP film which has a sheet resistance value of 1.31 k Ω/⟂, a remarkable enhancement in sheet resistance was achieved from the hybrid structures, showing sheet resistance values of 44.74 Ω/⟂ and 28.07 Ω/⟂ for ITO-NP/AgNW and ITO-NP/AgNW/ITO-NP structures, respectively. In addition, the ITO-NP/AgNW/ITO-NP triple-layered transparent conductor showed greatly enhanced thermal stability in terms of sheet resistance and transmittance against a high-temperature environment up to 300 degrees C. Based on these results, it can be suggested that the hybrid structure has advantages of enhancing both electrical properties of ITO-NP layer and thermal stability of AgNW layer, and we believe the hybrid structure transparent conductors can be a suitable option for applications which require high electrical conductivity, transmittance, and thermal stability.

Publication types

  • Research Support, Non-U.S. Gov't