Laser damage density measurement of optical components in the sub-picosecond regime

Opt Lett. 2015 May 1;40(9):2091-4. doi: 10.1364/OL.40.002091.

Abstract

A rasterscan procedure adapted to the sub-picosecond regime is set to determine laser-induced damage densities as function of fluences. Density measurement is carried out on dielectric high-reflective coatings operating at 1053 nm. Whereas laser-induced damage is usually considered deterministic in this regime, damage events occur on these structures for fluences significantly lower than their intrinsic damage threshold. Scanning electron microscope observations of these "under-threshold" damage sites evidence ejections of defects, embedded in the dielectric stack. This method brings a new viewpoint for the qualification of optical components and their optimization for a high resistance in the sub-picosecond regime.