Chitin is a component of the Rhodnius prolixus midgut

Insect Biochem Mol Biol. 2016 Feb:69:61-70. doi: 10.1016/j.ibmb.2015.04.003. Epub 2015 Apr 22.

Abstract

Chitin is an essential component of the peritrophic matrix (PM), which is a structure that lines the insect's gut and protects against mechanical damage and pathogens. Rhodnius prolixus (Hemiptera: Reduviidae) does not have a PM, but it has an analogous structure, the perimicrovillar membrane (PMM); chitin has not been described in this structure. Here, we show that chitin is present in the R. prolixus midgut using several techniques. The FTIR spectrum of the KOH-resistant putative chitin-material extracted from the midgut bolus showed peaks characteristic of the chitin molecule at 3500, 1675 and 1085 cm(1). Both the midgut bolus material and the standard chitin NMR spectra showed a peak at 1.88 ppm, which is certainly due to methyl protons in the acetamide a group. The percentages of radioactive N-acetylglucosamine (CPM) incorporated were 2 and 4% for the entire intestine and bolus, respectively. The KOH-resistant putative chitin-material was also extracted and purified from the N-acetylglucosamine radioactive bolus, and the radioactivity was estimated through liquid scintillation. The intestinal CHS cDNA translated sequence was the same as previously described for the R. prolixus cuticle and ovaries. Phenotypic alterations were observed in the midgut of females with a silenced CHS gene after a blood meal, such as retarded blood meal digestion; the presence of fresh blood that remained red nine days after the blood meal; and reduced trachea and hemozoin content compared with the control. Wheat germ agglutinin (a specific probe that detects chitin) labeling proximal to the intestine (crop and midgut) was much lower in females with a silenced CHS gene, especially in the midgut region, where almost no fluorescence signal was detected compared with the control groups. Midguts from females with a CHS gene silenced by dsRNA-CHS and control midguts pre-treated with chitinase showed that the chitin-derived fluorescence signal decreased in the region around the epithelium, the region facing the midgut and projections towards the intestinal lumen when evaluated microscopically. The relative reduction in CHS transcripts by approximately 80% using an RNAi assay supports the phenotypical alterations in the midgut observed using fluorescence microscopy assays. These data show that chitin is present in the R. prolixus midgut epithelium and in its surface projections facing the lumen. The CHS gene expression and the presence of chitin in the R. prolixus midgut may suggest a target for controlling Chagas disease vectors and addressing this public health problem.

Keywords: Chitin; Chitin synthase; Midgut; Perimicrovillar membrane; RNA interference; Rhodnius prolixus.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Chitin / analysis*
  • Digestive System / chemistry
  • Female
  • Rabbits
  • Rhodnius / chemistry*

Substances

  • Chitin