Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania

Chem Cent J. 2015 Apr 12:9:19. doi: 10.1186/s13065-015-0095-2. eCollection 2015.

Abstract

Background: The determination of micro-, macroelements and heavy metals in the soil-grapevine-wine system is extremely important for the wine industry, the grape and wine quality, and also for consumer health. The quantitative analysis of 10 elements: Na, Ca, Mg, Fe, Cu, Zn, Pb, Cd, Ni, Co were made in soil at different depths and also in grapevines (leaves and canes). For grape juice and wine there were analyzed the concentrations of Cu, Zn, Pb, Ni and Cd on three cultivars Fetească albă, Fetească regală and Riesling italian, located in Turulung vineyard, NW Romania. All the elements were detected using flame atomic absorbtion spectrometry (FAAS).

Results: Only the Cu concentration [Formula: see text] has higher values than the maximum limit admitted (20 mg/kg). The concentrations of micro-, macroelements and heavy metals in aerial parts of grapevine cultivars occur in the following order: Ca > Na > Mg > Fe > Cu > Zn > Ni > Pb > Co > Cd in canes and leaves. Cu, Pb, Ni and Zn concentration levels decreased in wine compared to grape must, possibly forming insoluble components that can be removed through sedimentation together with yeasts and lees during fermentation. Cd was under the limit of detection. Heavy metals detected in Romanian wines were below the recommended health limits of the International organization of wine and vine (O.I.V.).

Conclusions: In soil, all the elements studied were under the maximum limit admitted, except, elevated concentrations of Cu. These high values obtained could be an effect of different Cu treatments in vineyards. In canes and leaves, Cu, Zn, Pb, Cd, Ni had higher concentration levels than in grape juice (must) and wine. Conversely, the metal acumulation of wines obtained by micro-vinification process (in the laboratory) are lower than in must.

Keywords: FAAS technology; Grapevine cultivars; Heavy metals; Macroelements; Micro-; Soil-grapevine-wine; Vitis vinifera L.