Optimum design of a nanoscale spin-Seebeck power device

Nanoscale. 2015 May 7;7(17):7920-6. doi: 10.1039/c5nr01738f.

Abstract

A theoretical model of a nanoscale spin-Seebeck power device (SSPD) is proposed based on the longitudinal spin-Seebeck effect in bilayers made of a ferromagnetic insulator and a normal metal. Expressions for the power output and thermal efficiency of the SSPD are derived analytically. The performance characteristics of the nanoscale SSPD are analyzed using numerical simulation. The maximum power output density and efficiency are calculated numerically. The effect of the spin Hall angle on the performance characteristics of the SSPD is analyzed. The choice of materials and the structure of the device are discussed. The optimum criteria of some key parameters of the SSPD, such as the power output density, efficiency, thickness of the normal metal, and the load resistance, are given. The results obtained here could provide a theoretical basis for the optimal design and operation of nanoscale SSPDs.

Publication types

  • Research Support, Non-U.S. Gov't