Selenate as a novel ligand for keplerate chemistry. New {W72Mo60} keplerates with selenates inside the cavity

Dalton Trans. 2015 May 21;44(19):8839-45. doi: 10.1039/c5dt00349k.

Abstract

The synthesis and characterization of three novel keplerate-type compounds containing the {W72Mo60} mixed-metal core are reported. Complexes (NH4)72[{W6O21(H2O)6}12{Mo2O4(SeO4)}30]·150H2O·6(NH4)2SeO4 (1a) and (NH4)25(NH2Me2)47[{W6O21(H2O)6}12{Mo2O4(SeO4)}30]·130H2O·3(NH4)2SeO4 (1b) were prepared by ligand substitution from the acetate anionic complex [{W6O21(H2O)5(CH3COO)0.5}12{Mo2O4(CH3COO)}30](48-) and selenate. The selenate anions in keplerate ions [{W6O21(H2O)6}12{Mo2O4(SeO4)}30](72-) are very labile and easily aquate with the formation of [{W6O21(H2O)6}12{Mo2O4}30(SeO4)20(H2O)20](52-), which was isolated as (NH4)20(NH2Me2)32[{W6O21(H2O)6}12{Mo2O4}30(SeO4)20(H2O)20]·150H2O (2) and structurally characterized. In the crystal structure of 2 selenate has several coordination modes, preferentially bonding to the {Mo2O4}(2+) units, and, additionally, to the {(W)W5} pentagonal blocks. The compounds have been characterized by elemental analysis, Raman, IR and (77)Se NMR spectroscopy, and by ESI mass spectrometry. Capillary electrophoresis was used for characterization of keplerates in solution for the first time.