Cell lineage allocation in equine blastocysts produced in vitro under varying glucose concentrations

Reproduction. 2015 Jul;150(1):31-41. doi: 10.1530/REP-14-0662. Epub 2015 Apr 7.

Abstract

Equine embryos develop in vitro in the presence of high glucose concentrations, but little is known about their requirements for development. We evaluated the effect of glucose concentrations in medium on blastocyst development after ICSI. In experiment 1, there were no significant differences in rates of blastocyst formation among embryos cultured in our standard medium (DMEM/F-12), which contained >16 mM glucose, and those cultured in a minimal-glucose embryo culture medium (<1 mM; Global medium, GB), with either 0 added glucose for the first 5 days, then 20 mM (0-20) or 20 mM for the entire culture period (20-20). In experiment 2, there were no significant differences in the rates of blastocyst development (31-46%) for embryos cultured in four glucose treatments in GB (0-10, 0-20, 5-10, or 5-20). Blastocysts were evaluated by immunofluorescence for lineage-specific markers. All cells stained positively for POU5F1. An inner cluster of cells was identified that included presumptive primitive endoderm cells (GATA6-positive) and presumptive epiblast (EPI) cells. The 5-20 treatment resulted in a significantly lower number of presumptive EPI-lineage cells than the 0-20 treatment did. GATA6-positive cells appeared to be allocated to the primitive endoderm independent of the formation of an inner cell mass, as was previously hypothesized for equine embryos. These data demonstrate that equine blastocyst development is not dependent on high glucose concentrations during early culture; rather, environmental glucose may affect cell allocation. They also present the first analysis of cell lineage allocation in in vitro-fertilized equine blastocysts. These findings expand our understanding of the factors that affect embryo development in the horse.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blastocyst / cytology
  • Blastocyst / drug effects*
  • Cell Lineage / drug effects*
  • Cell Lineage / physiology*
  • Embryonic Development / drug effects*
  • Embryonic Development / physiology
  • Glucose / administration & dosage*
  • Horses

Substances

  • Glucose