Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance

Theor Appl Genet. 2015 Jul;128(7):1385-95. doi: 10.1007/s00122-015-2513-1. Epub 2015 Apr 8.

Abstract

Using a GBS-SNP map, a QTL for pre-harvest sprouting resistance on 4AL of Totoumai A was delimited to 2.9-cM interval, and SNP closely linked to several other QTL were identified. Pre-harvest sprouting (PHS) of wheat is a major constraint to wheat production in many wheat-growing areas worldwide, because it reduces both wheat grain yield and the end-use quality. To identify markers tightly linked to the quantitative trait loci (QTL) for PHS resistance and seed dormancy (SD), we evaluated 155 recombinant inbred lines (RIL) derived from a cross between a PHS-resistant parent 'Tutoumai A' and a PHS-susceptible parent 'Siyang 936' for single-nucleotide polymorphisms (SNP) using genotyping-by-sequencing (GBS), and for PHS resistance and SD using both field and greenhouse grown plants. Two SNP, GBS109947 and GBS212432, were mapped to a major QTL region for PHS resistance and SD on chromosome 4AL, and delimited the QTL to a 2.9-cM interval. Two and nine additional SNP were mapped to minor QTL regions for SD on chromosome 5B and 5A, respectively. Critical SNP in these QTL regions were converted into KBioscience Competitive Allele-Specific PCR (KASP) assays that can be easily used for marker-assisted selection to improve PHS resistance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chromosome Mapping
  • DNA, Plant / genetics
  • Genetic Linkage
  • Genetic Markers
  • Genotype
  • Germination / genetics*
  • Plant Dormancy*
  • Polymorphism, Single Nucleotide
  • Quantitative Trait Loci*
  • Seeds / genetics
  • Triticum / genetics*

Substances

  • DNA, Plant
  • Genetic Markers