Contributions of spinal D-amino acid oxidase to chronic morphine-induced hyperalgesia

J Pharm Biomed Anal. 2015 Dec 10:116:131-8. doi: 10.1016/j.jpba.2015.03.021. Epub 2015 Mar 28.

Abstract

Spinal D-amino acid oxidase (DAAO) is an FAD-dependent peroxisomal flavoenzyme which mediates the conversion of neutral and polar D-amino acids (including D-serine) to the corresponding α-keto acids, and simultaneously produces hydrogen peroxide and ammonia. This study has aimed to explore the potential contributions of spinal DAAO and its mediated hydrogen peroxide/D-serine metabolism to the development of morphine-induced hyperalgesia. Bi-daily subcutaneous injections of morphine to mice over 7 days induced thermal hyperalgesia as measured by both the hot-plate and tail-immersion tests, and spinal astroglial activation with increased spinal gene expression of DAAO, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)). Subcutaneous injections of the potent DAAO inhibitor CBIO (5-chloro-benzo[D]isoxazol-3-ol) prevented and reversed the chronic morphine-induced hyperalgesia. CBIO also inhibited both astrocyte activation and the expression of pro-inflammatory cytokines. Intrathecal injection of the hydrogen peroxide scavenger PBN (phenyl-N-tert-butylnitrone) and of catalase completely reversed established morphine hyperalgesia, whereas subcutaneous injections of exogenous D-serine failed to alter chronic morphine-induced hyperalgesia. These results provided evidence that spinal DAAO and its subsequent production of hydrogen peroxide rather than the D-serine metabolism contributed to the development of morphine-induced hyperalgesia.

Keywords: CBIO (5-chloro-benzo[d]isoxazol-3-ol); Morphine-induced hyperalgesia; Spinal cord; d-Amino acid oxidase (DAAO).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics, Opioid / administration & dosage*
  • Animals
  • D-Amino-Acid Oxidase / metabolism*
  • Female
  • Hyperalgesia / drug therapy*
  • Hyperalgesia / enzymology*
  • Injections, Spinal
  • Injections, Subcutaneous
  • Mice
  • Morphine / administration & dosage*
  • Pain Measurement / drug effects*

Substances

  • Analgesics, Opioid
  • Morphine
  • D-Amino-Acid Oxidase