Distribution of serotonin 5-HT1A-binding sites in the brainstem and the hypothalamus, and their roles in 5-HT-induced sleep and ingestive behaviors in rock pigeons (Columba livia)

Behav Brain Res. 2015 Dec 15:295:45-63. doi: 10.1016/j.bbr.2015.03.059. Epub 2015 Apr 3.

Abstract

Serotonin 1A receptors (5-HT1ARs), which are widely distributed in the mammalian brain, participate in cognitive and emotional functions. In birds, 5-HT1ARs are expressed in prosencephalic areas involved in visual and cognitive functions. Diverse evidence supports 5-HT1AR-mediated 5-HT-induced ingestive and sleep behaviors in birds. Here, we describe the distribution of 5-HT1ARs in the hypothalamus and brainstem of birds, analyze their potential roles in sleep and ingestive behaviors, and attempt to determine the involvement of auto-/hetero-5-HT1ARs in these behaviors. In 6 pigeons, the anatomical distribution of [(3)H]8-OH-DPAT binding in the rostral brainstem and hypothalamus was examined. Ingestive/sleep behaviors were recorded (1h) in 16 pigeons pretreated with MM77 (a heterosynaptic 5-HT1AR antagonist; 23 or 69 nmol) for 20 min, followed by intracerebroventricular ICV injection of 5-HT (N:8; 150 nmol), 8-OH-DPAT (DPAT, a 5-HT1A,7R agonist, 30 nmol N:8) or vehicle. 5-HT- and DPAT-induced sleep and ingestive behaviors, brainstem 5-HT neuronal density and brain 5-HT content were examined in 12 pigeons, pretreated by ICV with the 5-HT neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) or vehicle (N:6/group). The distribution of brainstem and diencephalic c-Fos immunoreactivity after ICV injection of 5-HT, DPAT or vehicle (N:5/group) into birds provided with or denied access to water is also described. 5-HT1ARs are concentrated in the brainstem 5-HTergic areas and throughout the periventricular hypothalamus, preoptic nuclei and circumventricular organs. 5-HT and DPAT produced a complex c-Fos expression pattern in the 5-HT1AR-enriched preoptic hypothalamus and the circumventricular organs, which are related to drinking and sleep regulation, but modestly affected c-Fos expression in 5-HTergic neurons. The 5-HT-induced ingestivebehaviors and the 5-HT- and DPAT-induced sleep behaviors were reduced by MM77 pretreatment. 5,7-DHT increased sleep per se, decreased tryptophan hydroxylase expression in the raphe nuclei and decreased prosencephalic 5-HT release but failed to affect 5-HT- or DPAT-induced drinking or sleep behavior. 5-HT- and DPAT-induced ingestive and sleep behaviors in pigeons appear to be mediated by heterosynaptic and/or non-somatodendritic presynaptic 5-HT1ARs localized to periventricular diencephalic circuits.

Keywords: 5-HT-1A receptor; Cerebrospinal fluid; Drinking; Feeding; Serotonin; Sleep.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 5,7-Dihydroxytryptamine / pharmacology
  • 8-Hydroxy-2-(di-n-propylamino)tetralin / pharmacology
  • Animals
  • Binding Sites
  • Brain Stem / drug effects
  • Brain Stem / metabolism*
  • Columbidae / metabolism*
  • Feeding Behavior / drug effects
  • Female
  • Hypothalamus / metabolism*
  • Male
  • Raphe Nuclei / metabolism
  • Receptor, Serotonin, 5-HT1A / metabolism*
  • Receptors, Serotonin
  • Serotonin / metabolism
  • Serotonin Receptor Agonists / pharmacology
  • Sleep / drug effects*
  • Sleep / physiology
  • Sleep Aids, Pharmaceutical

Substances

  • Receptors, Serotonin
  • Serotonin Receptor Agonists
  • Sleep Aids, Pharmaceutical
  • Receptor, Serotonin, 5-HT1A
  • 5,7-Dihydroxytryptamine
  • Serotonin
  • 8-Hydroxy-2-(di-n-propylamino)tetralin