Sub-harmonic periodic pulse train recovery from aperiodic optical pulse sequences through dispersion-induced temporal self-imaging

Opt Express. 2015 Feb 9;23(3):3602-13. doi: 10.1364/OE.23.003602.

Abstract

Temporal self-imaging effects (TSIs) are observed when a periodic pulse train propagates through a first-order dispersive medium. Under specific dispersion conditions, either an exact, rate multiplied or rate divided image of the input signal is reproduced at the output. TSI possesses an interesting self-restoration capability even when acting over an aperiodic train of pulses. In this work, we investigate and demonstrate, for the first time to our knowledge, the capability of TSI to produce periodic sub-harmonic (rate-divided) pulse trains from aperiodic sequences. We use this inherent property of the TSI to implement a novel, simple and reconfigurable sub-harmonic optical clock recovery technique from RZ-OOK data signals. The proposed technique features a very simple realization, involving only temporal phase modulation and first-order dispersion and it allows one to set the repetition rate of the reconstructed clock signal in integer fractions (sub-harmonics) of the input bit rate. Proof-of-concept experiments are reported to validate the proposed technique and guidelines for optimization of the clock-recovery process are also outlined.