Critical assessment of the emission spectra of various photosystem II core complexes

Photosynth Res. 2015 Jun;124(3):253-65. doi: 10.1007/s11120-015-0128-7. Epub 2015 Apr 2.

Abstract

We evaluate low-temperature (low-T) emission spectra of photosystem II core complexes (PSII-cc) previously reported in the literature, which are compared with emission spectra of PSII-cc obtained in this work from spinach and for dissolved PSII crystals from Thermosynechococcus (T.) elongatus. This new spectral dataset is used to interpret data published on membrane PSII (PSII-m) fragments from spinach and Chlamydomonas reinhardtii, as well as PSII-cc from T. vulcanus and intentionally damaged PSII-cc from spinach. This study offers new insight into the assignment of emission spectra reported on PSII-cc from different organisms. Previously reported spectra are also compared with data obtained at different saturation levels of the lowest energy state(s) of spinach and T. elongatus PSII-cc via hole burning in order to provide more insight into emission from bleached and/or photodamaged complexes. We show that typical low-T emission spectra of PSII-cc (with closed RCs), in addition to the 695 nm fluorescence band assigned to the intact CP47 complex (Reppert et al. J Phys Chem B 114:11884-11898, 2010), can be contributed to by several emission bands, depending on sample quality. Possible contributions include (i) a band near 690-691 nm that is largely reversible upon temperature annealing, proving that the band originates from CP47 with a bleached low-energy state near 693 nm (Neupane et al. J Am Chem Soc 132:4214-4229, 2010; Reppert et al. J Phys Chem B 114:11884-11898, 2010); (ii) CP43 emission at 683.3 nm (not at 685 nm, i.e., the F685 band, as reported in the literature) (Dang et al. J Phys Chem B 112:9921-9933, 2008; Reppert et al. J Phys Chem B 112:9934-9947, 2008); (iii) trap emission from destabilized CP47 complexes near 691 nm (FT1) and 685 nm (FT2) (Neupane et al. J Am Chem Soc 132:4214-4229, 2010); and (iv) emission from the RC pigments near 686-687 nm. We suggest that recently reported emission of single PSII-cc complexes from T. elongatus may not represent intact complexes, while those obtained for T. elongatus presented in this work most likely represent intact PSII-cc, since they are nearly indistinguishable from emission spectra obtained for various PSII-m fragments.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Chlamydomonas reinhardtii / chemistry*
  • Chlorophyll / chemistry
  • Crystallization
  • Cyanobacteria / chemistry*
  • Photosystem II Protein Complex / chemistry*
  • Species Specificity
  • Spectrometry, Fluorescence
  • Spinacia oleracea / chemistry*
  • Temperature

Substances

  • Photosystem II Protein Complex
  • Chlorophyll