The effect of tyrosine residues on α-synuclein fibrillation

Acta Chim Slov. 2015;62(1):181-9. doi: 10.17344/acsi.2014.882.

Abstract

Aggregation of the intrinsically disordered protein α-synuclein into ordered amyloid fibrils is implicated in the pathogenesis of Parkinson's disease. To unravel the role of Tyr residues in α-synuclein fibrillation, we prepared recombinant N-terminal (Y39A) and C-terminal (Y(125,133,136)A) mutants of α-synuclein and examined their fibrillation propensities by thioflavin T and 1-anilinonaphthalene-8-sulfonate (ANS) fluorescent probes, SDS-PAGE and atomic force microscopy. We demonstrate that in contrast to wild-type α-synuclein, both mutants show large, but comparable delays in the fibrillation process and exhibit enhanced hydrophobicity during fibril-like assembly. Both Tyr mutants form fibril-like structures after prolonged incubation periods, which are morphologically distinct from those of the wild-type protein. Our results suggest that the N-terminal and C-terminal Tyr residues of α-synuclein are important primarily for the initiation of the fibrillation process.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Mutation / genetics
  • Tyrosine / genetics
  • Tyrosine / metabolism*
  • alpha-Synuclein / chemistry*
  • alpha-Synuclein / genetics
  • alpha-Synuclein / isolation & purification
  • alpha-Synuclein / metabolism*

Substances

  • alpha-Synuclein
  • Tyrosine