Manganese-mediated MRI signals correlate with functional β-cell mass during diabetes progression

Diabetes. 2015 Jun;64(6):2138-47. doi: 10.2337/db14-0864. Epub 2015 Mar 24.

Abstract

Diabetes diagnostic therapy and research would strongly benefit from noninvasive accurate imaging of the functional β-cells in the pancreas. Here, we developed an analysis of functional β-cell mass (BCM) by measuring manganese (Mn(2+)) uptake kinetics into glucose-stimulated β-cells by T1-weighted in vivo Mn(2+)-mediated MRI (MnMRI) in C57Bl/6J mice. Weekly MRI analysis during the diabetes progression in mice fed a high-fat/high-sucrose diet (HFD) showed increased Mn(2+)-signals in the pancreas of the HFD-fed mice during the compensation phase, when glucose tolerance and glucose-stimulated insulin secretion (GSIS) were improved and BCM was increased compared with normal diet-fed mice. The increased signal was only transient; from the 4th week on, MRI signals decreased significantly in the HFD group, and the reduced MRI signal in HFD mice persisted over the whole 12-week experimental period, which again correlated with both impaired glucose tolerance and GSIS, although BCM remained unchanged. Rapid and significantly decreased MRI signals were confirmed in diabetic mice after streptozotocin (STZ) injection. No long-term effects of Mn(2+) on glucose tolerance were observed. Our optimized MnMRI protocol fulfills the requirements of noninvasive MRI analysis and detects already small changes in the functional BCM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Diabetes Mellitus, Experimental / metabolism*
  • Diabetes Mellitus, Experimental / pathology
  • Insulin-Secreting Cells / metabolism*
  • Insulin-Secreting Cells / pathology
  • Magnetic Resonance Spectroscopy / methods*
  • Male
  • Manganese / metabolism*
  • Mice

Substances

  • Manganese