Ebolavirus classification based on natural vectors

DNA Cell Biol. 2015 Jun;34(6):418-28. doi: 10.1089/dna.2014.2678. Epub 2015 Mar 24.

Abstract

According to the WHO, ebolaviruses have resulted in 8818 human deaths in West Africa as of January 2015. To better understand the evolutionary relationship of the ebolaviruses and infer virulence from the relationship, we applied the alignment-free natural vector method to classify the newest ebolaviruses. The dataset includes three new Guinea viruses as well as 99 viruses from Sierra Leone. For the viruses of the family of Filoviridae, both genus label classification and species label classification achieve an accuracy rate of 100%. We represented the relationships among Filoviridae viruses by Unweighted Pair Group Method with Arithmetic Mean (UPGMA) phylogenetic trees and found that the filoviruses can be separated well by three genera. We performed the phylogenetic analysis on the relationship among different species of Ebolavirus by their coding-complete genomes and seven viral protein genes (glycoprotein [GP], nucleoprotein [NP], VP24, VP30, VP35, VP40, and RNA polymerase [L]). The topology of the phylogenetic tree by the viral protein VP24 shows consistency with the variations of virulence of ebolaviruses. The result suggests that VP24 be a pharmaceutical target for treating or preventing ebolaviruses.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ebolavirus / classification*
  • Ebolavirus / genetics
  • Evolution, Molecular
  • Genome, Viral
  • Marburgvirus / classification
  • Marburgvirus / genetics
  • Models, Genetic
  • Molecular Typing
  • Phylogeny
  • Sequence Analysis, DNA