Engineering poly(ethylene glycol) particles for improved biodistribution

ACS Nano. 2015 Feb 24;9(2):1571-80. doi: 10.1021/nn5061578. Epub 2015 Jan 21.

Abstract

We report the engineering of poly(ethylene glycol) (PEG) hydrogel particles using a mesoporous silica (MS) templating method via tuning the PEG molecular weight, particle size, and the presence or absence of the template and investigate the cell association and biodistribution of these particles. An ex vivo assay based on human whole blood that is more sensitive and relevant than traditional cell-line based assays for predicting in vivo circulation behavior is introduced. The association of MS@PEG particles (template present) with granulocytes and monocytes is higher compared with PEG particles (template absent). Increasing the PEG molecular weight (from 10 to 40 kDa) or decreasing the PEG particle size (from 1400 to 150 nm) reduces phagocytic blood cell association of the PEG particles. Mice biodistribution studies show that the PEG particles exhibit extended circulation times (>12 h) compared with the MS@PEG particles and that the retention of smaller PEG particles (150 nm) in blood, when compared with larger PEG particles (>400 nm), is increased at least 4-fold at 12 h after injection. Our findings highlight the influence of unique aspects of polymer hydrogel particles on biological interactions. The reported PEG hydrogel particles represent a new class of polymer carriers with potential biomedical applications.

Keywords: PEG; biodistribution; cell association; hydrogel particles; mesoporous silica particles; nanoengineering.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Engineering*
  • Granulocytes / metabolism
  • Humans
  • Mice
  • Molecular Weight
  • Monocytes / metabolism
  • Particle Size
  • Polyethylene Glycols / chemistry*
  • Polyethylene Glycols / metabolism
  • Polyethylene Glycols / pharmacokinetics*
  • Silicon Dioxide / chemistry
  • Structure-Activity Relationship
  • Tissue Distribution

Substances

  • Polyethylene Glycols
  • Silicon Dioxide