Current state of genome-scale modeling in filamentous fungi

Biotechnol Lett. 2015 Jun;37(6):1131-9. doi: 10.1007/s10529-015-1782-8. Epub 2015 Feb 21.

Abstract

The group of filamentous fungi contains important species used in industrial biotechnology for acid, antibiotics and enzyme production. Their unique lifestyle turns these organisms into a valuable genetic reservoir of new natural products and biomass degrading enzymes that has not been used to full capacity. One of the major bottlenecks in the development of new strains into viable industrial hosts is the alteration of the metabolism towards optimal production. Genome-scale models promise a reduction in the time needed for metabolic engineering by predicting the most potent targets in silico before testing them in vivo. The increasing availability of high quality models and molecular biological tools for manipulating filamentous fungi renders the model-guided engineering of these fungal factories possible with comprehensive metabolic networks. A typical fungal model contains on average 1138 unique metabolic reactions and 1050 ORFs, making them a vast knowledge-base of fungal metabolism. In the present review we focus on the current state as well as potential future applications of genome-scale models in filamentous fungi.

Publication types

  • Review

MeSH terms

  • Biotechnology / methods
  • Fungi / genetics*
  • Fungi / metabolism*
  • Genome, Fungal*
  • Industrial Microbiology / methods
  • Metabolic Engineering / methods
  • Models, Biological
  • Systems Biology*