Genome-wide copy number profiling using high-density SNP array in chickens

Anim Genet. 2015 Apr;46(2):148-57. doi: 10.1111/age.12267. Epub 2015 Feb 6.

Abstract

Phenotypic diversity is a direct consequence resulting mainly from the impact of underlying genetic variation, and recent studies have shown that copy number variation (CNV) is emerging as an important contributor to both phenotypic variability and disease susceptibility. Herein, we performed a genome-wide CNV scan in 96 chickens from 12 diversified breeds, benefiting from the high-density Affymetrix 600 K SNP arrays. We identified a total of 231 autosomal CNV regions (CNVRs) encompassing 5.41 Mb of the chicken genome and corresponding to 0.59% of the autosomal sequence. The length of these CNVRs ranged from 2.6 to 586.2 kb with an average of 23.4 kb, including 130 gain, 93 loss and eight both gain and loss events. These CNVRs, especially deletions, had lower GC content and were located particularly in gene deserts. In particular, 102 CNVRs harbored 128 chicken genes, most of which were enriched in immune responses. We obtained 221 autosomal CNVRs after converting probe coordinates to Galgal3, and comparative analysis with previous studies illustrated that 153 of these CNVRs were regarded as novel events. Furthermore, qPCR assays were designed for 11 novel CNVRs, and eight (72.73%) were validated successfully. In this study, we demonstrated that the high-density 600 K SNP array can capture CNVs with higher efficiency and accuracy and highlighted the necessity of integrating multiple technologies and algorithms. Our findings provide a pioneering exploration of chicken CNVs based on a high-density SNP array, which contributes to a more comprehensive understanding of genetic variation in the chicken genome and is beneficial to unearthing potential CNVs underlying important traits of chickens.

Keywords: 600 K SNP chip; chicken; copy number variation; genetic diversity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breeding*
  • Chickens / genetics*
  • DNA Copy Number Variations*
  • Female
  • Genotype
  • Oligonucleotide Array Sequence Analysis / veterinary
  • Polymorphism, Single Nucleotide*