Hydrodynamics, Fungal Physiology, and Morphology

Adv Biochem Eng Biotechnol. 2015:149:55-90. doi: 10.1007/10_2015_304.

Abstract

Filamentous cultures, such as fungi and actinomycetes, contribute substantially to the pharmaceutical industry and to enzyme production, with an annual market of about 6 billion dollars. In mechanically stirred reactors, most frequently used in fermentation industry, microbial growth and metabolite productivity depend on complex interactions between hydrodynamics, oxygen transfer, and mycelial morphology. The dissipation of energy through mechanically stirring devices, either flasks or tanks, impacts both microbial growth through shearing forces on the cells and the transfer of mass and energy, improving the contact between phases (i.e., air bubbles and microorganisms) but also causing damage to the cells at high energy dissipation rates. Mechanical-induced signaling in the cells triggers the molecular responses to shear stress; however, the complete mechanism is not known. Volumetric power input and, more importantly, the energy dissipation/circulation function are the main parameters determining mycelial size, a phenomenon that can be explained by the interaction of mycelial aggregates and Kolmogorov eddies. The use of microparticles in fungal cultures is also a strategy to increase process productivity and reproducibility by controlling fungal morphology. In order to rigorously study the effects of hydrodynamics on the physiology of fungal microorganisms, it is necessary to rule out the possible associated effects of dissolved oxygen, something which has been reported scarcely. At the other hand, the processes of phase dispersion (including the suspended solid that is the filamentous biomass) are crucial in order to get an integral knowledge about biological and physicochemical interactions within the bioreactor. Digital image analysis is a powerful tool for getting relevant information in order to establish the mechanisms of mass transfer as well as to evaluate the viability of the mycelia. This review focuses on (a) the main characteristics of the two most common morphologies exhibited by filamentous microorganisms; (b) how hydrodynamic conditions affect morphology and physiology in filamentous cultures; and (c) techniques using digital image analysis to characterize the viability of filamentous microorganisms and mass transfer in multiphase dispersions. Representative case studies of fungi (Trichoderma harzianum and Pleurotus ostreatus) exhibiting different typical morphologies (disperse mycelia and pellets) are discussed.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Biomass
  • Bioreactors
  • Fungi / cytology
  • Fungi / physiology*
  • Hydrodynamics*
  • Industrial Microbiology / methods*
  • Industrial Microbiology / trends
  • Pleurotus / cytology
  • Pleurotus / physiology
  • Shear Strength
  • Signal Transduction
  • Stress, Mechanical
  • Trichoderma / cytology
  • Trichoderma / physiology