Epigenetic control of meiotic recombination in plants

Sci China Life Sci. 2015 Mar;58(3):223-31. doi: 10.1007/s11427-015-4811-x. Epub 2015 Feb 5.

Abstract

Meiotic recombination is a deeply conserved process within eukaryotes that has a profound effect on patterns of natural genetic variation. During meiosis homologous chromosomes pair and undergo DNA double strand breaks generated by the Spo11 endonuclease. These breaks can be repaired as crossovers that result in reciprocal exchange between chromosomes. The frequency of recombination along chromosomes is highly variable, for example, crossovers are rarely observed in heterochromatin and the centromeric regions. Recent work in plants has shown that crossover hotspots occur in gene promoters and are associated with specific chromatin modifications, including H2A.Z. Meiotic chromosomes are also organized in loop-base arrays connected to an underlying chromosome axis, which likely interacts with chromatin to organize patterns of recombination. Therefore, epigenetic information exerts a major influence on patterns of meiotic recombination along chromosomes, genetic variation within populations and evolution of plant genomes.

Publication types

  • Review

MeSH terms

  • Chromatin / genetics
  • Crossing Over, Genetic
  • Epigenesis, Genetic*
  • Meiosis / genetics*
  • Plants / genetics*
  • Recombination, Genetic / genetics*

Substances

  • Chromatin