Distinct pathways of RNA polymerase regulation by a phage-encoded factor

Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2017-22. doi: 10.1073/pnas.1416330112. Epub 2015 Feb 2.

Abstract

Transcription antitermination is a common strategy of gene expression regulation, but only a few transcription antitermination factors have been studied in detail. Here, we dissect the transcription antitermination mechanism of Xanthomonas oryzae virus Xp10 protein p7, which binds host RNA polymerase (RNAP) and regulates both transcription initiation and termination. We show that p7 suppresses intrinsic termination by decreasing RNAP pausing and increasing the transcription complex stability, in cooperation with host-encoded factor NusA. Uniquely, the antitermination activity of p7 depends on the ω subunit of the RNAP core and is modulated by ppGpp. In contrast, the inhibition of transcription initiation by p7 does not require ω but depends on other RNAP sites. Our results suggest that p7, a bifunctional transcription factor, uses distinct mechanisms to control different steps of transcription. We propose that regulatory functions of the ω subunit revealed by our analysis may extend to its homologs in eukaryotic RNAPs.

Keywords: NusA; RNA polymerase; omega subunit; transcription antitermination; transcription pausing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteriophages / genetics*
  • DNA-Directed DNA Polymerase / metabolism*
  • Terminator Regions, Genetic
  • Xanthomonas / virology

Substances

  • DNA-Directed DNA Polymerase