Multilayered core-satellite nanoassemblies with fine-tunable broadband plasmon resonances

Nanoscale. 2015 Feb 28;7(8):3445-52. doi: 10.1039/c4nr06756h.

Abstract

We report on a robust nanotemplating approach to synthesize plasmonic multilayered core-satellite (MCS) nanoassemblies. Templated with gold nanorods, ultrathin Au/Ag alloy cages and satellite gold nanoparticles can be constructed sequentially by galvanic replacement reactions and electrostatic self-assembly, respectively, forming structurally well-defined MCS. The MCS nanoassemblies exhibit strong broadband plasmon resonances from ∼440 to ∼1100 nm, and their resonant features can be fine-tuned by adjusting the size and number density of satellite nanoparticles and by adjusting the thickness of the silica spacer between cage and satellite particles. Such fine-engineered MCS nanoassemblies enable precise programming of the strength and distribution of "hot spots" to maximize the overall enhancement of surface enhanced Raman scattering.

Publication types

  • Research Support, Non-U.S. Gov't