The impacts of electricity dispatch protocols on the emission reductions due to wind power and carbon tax

Environ Sci Technol. 2015 Feb 17;49(4):2568-76. doi: 10.1021/es5052099. Epub 2015 Feb 5.

Abstract

Two dispatch protocols have been adopted by electricity markets to deal with the uncertainty of wind power but the effects of the selection between the dispatch protocols have not been comprehensively analyzed. We establish a framework to compare the impacts of adopting different dispatch protocols on the efficacy of using wind power and implementing a carbon tax to reduce emissions. We suggest that a market has high potential to achieve greater emission reduction by adopting the stochastic dispatch protocol instead of the static protocol when the wind energy in the market is highly uncertain or the market has enough adjustable generators, such as gas-fired combustion generators. Furthermore, the carbon-tax policy is more cost-efficient for reducing CO2 emission when the market operates according to the stochastic protocol rather than the static protocol. An empirical study, which is calibrated according to the data from the Electric Reliability Council of Texas market, confirms that using wind energy in the Texas market results in a 12% CO2 emission reduction when the market uses the stochastic dispatch protocol instead of the 8% emission reduction associated with the static protocol. In addition, if a 6$/ton carbon tax is implemented in the Texas market operated according to the stochastic protocol, the CO2 emission is similar to the emission level from the same market with a 16$/ton carbon tax operated according to the static protocol. Correspondingly, the 16$/ton carbon tax associated with the static protocol costs 42.6% more than the 6$/ton carbon tax associated with the stochastic protocol.

MeSH terms

  • Carbon / economics*
  • Carbon Dioxide / analysis
  • Electricity*
  • Power Plants / economics*
  • Taxes / economics*
  • Wind*

Substances

  • Carbon Dioxide
  • Carbon