Thermographic and microscopic evaluation of LARS knee ligament tearing

Rom J Morphol Embryol. 2014;55(3 Suppl):1231-5.

Abstract

Damage to knee articular ligaments causes important functional problems and adversely affects particularly the stability of the knee joint. Several methods were developed in order to repair damage to the anterior cruciate ligament (ACL), which employ autografts, allografts, as well as synthetic ligaments. One such synthetic scaffold, the ligament advanced reinforcement system (LARS) synthetic ligament is made of non-absorbing polyethylene terephthalate fibers whose structure allow tissue ingrowths in the intra-articular part, improving the stability of the joint. The LARS ligament is nowadays widely used in modern knee surgery in the Europe, Canada, China or Japan. This paper evaluates LARS ligament from two perspectives. The first regards a study done by the Orthopedics Clinic II, Timisoara, Romania, which compared results obtained by employing two techniques of ACL repair - the Bone-Tendon-Bone (BTB) or LARS arthroscopic, intra-articular techniques. This study found that patients treated with the BTB technique presented with an IKDC score of 45.82±1.14 units preoperative, with increasing values in the first nine months after each implant post-surgical ligament restoration, reaching an average value of 75.92 ± 2.88 units postoperative. Patients treated with the LARS technique presented with an IKDC score of 43.64 ± 1.11 units preoperative, and a score of 77.32 ± 2.71 units postoperative. The second perspective describes the thermographic and microscopic analysis of an artificial knee ligament tearing or loosening. The objective of the study was to obtain information regarding the design of artificial ligaments in order to expand their lifespan and avoid complications such as recurring synovitis, osteoarthritis and trauma of the knee joint. Thermographic data has shown that tearing begins from the inside out, thus improving the inner design of the ligament would probably enhance its durability. An optical microscope was employed to obtain images of structural damage in the inner layers, for use in further analysis of the tears. In conclusion, the LARS artificial ligament, like the BTB technique, displays both advantages and disadvantages. It is important to understand that these two options of ACL lesion repair are not competing. LARS could, in addition to its use in primary ACL ruptures, be utilized in revisions of autologous graft rupture post primary ACL repair.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Arthroscopy
  • Demography
  • Female
  • Humans
  • Infrared Rays
  • Knee Joint / pathology*
  • Ligaments / pathology*
  • Male
  • Microscopy / methods*
  • Temperature
  • Thermography / methods*
  • Tissue Scaffolds / chemistry*
  • Young Adult