Photon upconversion in supramolecular gel matrixes: spontaneous accumulation of light-harvesting donor-acceptor arrays in nanofibers and acquired air stability

J Am Chem Soc. 2015 Feb 11;137(5):1887-94. doi: 10.1021/ja511061h. Epub 2015 Jan 30.

Abstract

Efficient triplet-triplet annihilation (TTA)-based photon upconversion (UC) is achieved in supramolecular organogel matrixes. Intense UC emission was observed from donor (sensitizer)-acceptor (emitter) pairs in organogels even under air-saturated condition, which solved a major problem: deactivation of excited triplet states and TTA-UC by molecular oxygen. These unique TTA-UC molecular systems were formed by spontaneous accumulation of donor and acceptor molecules in the gel nanofibers which are stabilized by developed hydrogen bond networks. These molecules preorganized in nanofibers showed efficient transfer and migration of triplet energy, as revealed by a series of spectroscopic, microscopic, and rheological characterizations. Surprisingly, the donor and acceptor molecules incorporated in nanofibers are significantly protected from the quenching action of dissolved molecular oxygen, indicating very low solubility of oxygen to nanofibers. In addition, efficient TTA-UC is achieved even under excitation power lower than the solar irradiance. These observations clearly unveil the adaptive feature of host gel nanofiber networks that allows efficient and cooperative inclusion of donor-acceptor molecules while maintaining their structural integrity. As evidence, thermally induced reversible assembly/disassembly of supramolecular gel networks lead to reversible modulation of the UC emission intensity. Moreover, the air-stable TTA-UC in supramolecular gel nanofibers was generally observed for a wide combination of donor-acceptor pairs which enabled near IR-to-yellow, red-to-cyan, green-to-blue, and blue-to-UV wavelength conversions. These findings provide a new perspective of air-stable TTA-UC molecular systems; spontaneous and adaptive accumulation of donor and acceptor molecules in oxygen-blocking, self-assembled nanomatrixes. The oxygen-barrier property of l-glutamate-derived organogel nanofibers has been unveiled for the first time, which could find many applications in stabilizing air-sensitive species in aerated systems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorption, Physicochemical
  • Air*
  • Gels
  • Models, Molecular
  • Molecular Conformation
  • Nanofibers / chemistry*
  • Photons*
  • Temperature

Substances

  • Gels