Photogenerated lophyl radicals in 1-alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides

Photochem Photobiol Sci. 2015 Apr;14(4):714-25. doi: 10.1039/c4pp00386a.

Abstract

1-Alkyl-3-vinylimidazolium bis(trifluoromethylsulfonyl)imides were investigated as a matrix for photogenerated lophyl radicals obtained by irradiation of o-chlorohexaarylbisimidazole (o-Cl-HABI). Photoinduced polymerization of ionic liquid monomers using the photoinitiator system composed of o-Cl-HABI and 3-mercapto-1,2,4-4H-triazole was investigated by photo-DSC. Selected thermal properties and viscosity of these ionic liquid monomers are important to understand the lophyl radical kinetics after exposure. Solvent cage effects and viscosity of the ionic liquid monomers strongly affect radical recombination in the dark. This was investigated at different temperatures. The rate constant for radical recombination (krec) decreases from the methyl to the butyl substituted ionic liquid monomer. This may be attributed to an increasing viscosity with increasing size of the alkyl substituent. However, further increase in the size of the alkyl substituent from a butyl to a heptyl group bound at the imidazolium ion results in an increase of krec although the viscosity does further increase. Therefore, a minimum in krec was found for the butyl substituted ionic liquid monomer. Furthermore, the Eyring parameters indicated a dependence on the chain length of the alkyl substituent bound at the imidazolium ion while the activation energy of the viscous flow only slightly changes. Furthermore, the size of the alkyl substituent bound at the cation of the ionic liquid monomers strongly influences both solvent cage and viscosity, and therefore, the concentration of lophyl radicals during photoinduced generation. Photo-induced polymerization of the ionic liquid monomers is affected by viscosity at low conversion and by vitrification at higher conversion. The latter is important for application of the ionic liquid monomers and the polymers made from them by photoinduced polymerization.