Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics

Biochimie. 2015 Apr:111:30-44. doi: 10.1016/j.biochi.2015.01.003. Epub 2015 Jan 9.

Abstract

Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000-3.125 μg/ml) effects evident on human cells in vitro.

Keywords: Antibacterial; Bacteria; Multi-drug resistance; Phospholipase A(2) inhibitory peptide (PLI); Python serum.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antimicrobial Cationic Peptides* / chemistry
  • Antimicrobial Cationic Peptides* / pharmacology
  • Bacteria / growth & development*
  • Blood Proteins* / chemistry
  • Blood Proteins* / pharmacology
  • Boidae*
  • Humans
  • Mice
  • Phospholipase A2 Inhibitors* / chemistry
  • Phospholipase A2 Inhibitors* / pharmacology
  • Phospholipases A2 / chemistry*

Substances

  • Antimicrobial Cationic Peptides
  • Blood Proteins
  • Phospholipase A2 Inhibitors
  • Phospholipases A2