Intermittent vagal nerve stimulation alters the electrophysiological properties of atrium in the myocardial infarction rat model

Annu Int Conf IEEE Eng Med Biol Soc. 2014:2014:1575-8. doi: 10.1109/EMBC.2014.6943904.

Abstract

Intermittent vagal nerve stimulation (VNS) has emerged as a potential therapy to treat cardiovascular diseases by delivering electrical stimulation to the vagus nerves. The purpose of this study was to investigate the electrophysiological changes in the atrium resulting from long-term intermittent VNS therapy in the chronic myocardial infarction (MI) rat model. MI was induced via left anterior descending coronary artery (LAD) ligation in male Sprague-Dawley rats, randomized into two groups: MI (implanted with nonfunctional VNS stimulators) and MI-VNS (implanted with functional VNS stimulators and received chronic intermittent VNS treatment) groups. Further, a sham group was used as control in which MI was not performed and received nonfunctional VNS stimulators. At 12 weeks, optical mapping of right atrium (RA) of sinus rhythm was performed. Our results demonstrated that chronic MI changed the electrical properties of the atrium action potentials and resulted in reduced action potential duration at 50% (APD50) and 80% (APD80) repolarization. Chronic right cervical VNS restored the APD back to healthy heart APD values. Additionally, APD heterogeneity index increased as a result of the chronic MI. Chronic VNS was not found to alter this increase. By calculating PR intervals from weekly ECG recordings of anaesthetized rats, we demonstrated that chronic MI and intermittent VNS did not affect the AV conduction time from the atria to the ventricles. From our study, we conclude the MI decreased the APD and increased APD spatial dispersion. VNS increased the APD back to healthy normal values but did change the APD spatial dispersion and the electrical conduction in the RA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Action Potentials / radiation effects
  • Animals
  • Disease Models, Animal
  • Electrophysiological Phenomena
  • Heart / physiopathology
  • Heart / radiation effects*
  • Heart Atria / radiation effects
  • Male
  • Myocardial Infarction / physiopathology*
  • Rats
  • Vagus Nerve Stimulation*