Casting protocols for the production of open cell aluminum foams by the replication technique and the effect on porosity

J Vis Exp. 2014 Dec 11:(94):52268. doi: 10.3791/52268.

Abstract

Metal foams are interesting materials from both a fundamental understanding and practical applications point of view. Uses have been proposed, and in many cases validated experimentally, for light weight or impact energy absorbing structures, as high surface area heat exchangers or electrodes, as implants to the body, and many more. Although great progress has been made in understanding their structure-properties relationships, the large number of different processing techniques, each producing material with different characteristics and structure, means that understanding of the individual effects of all aspects of structure is not complete. The replication process, where molten metal is infiltrated between grains of a removable preform material, allows a markedly high degree of control and has been used to good effect to elucidate some of these relationships. Nevertheless, the process has many steps that are dependent on individual "know-how", and this paper aims to provide a detailed description of all stages of one embodiment of this processing method, using materials and equipment that would be relatively easy to set up in a research environment. The goal of this protocol and its variants is to produce metal foams in an effective and simple way, giving the possibility to tailor the outcome of the samples by modifying certain steps within the process. By following this, open cell aluminum foams with pore sizes of 1-2.36 mm diameter and 61% to 77% porosity can be obtained.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Aluminum / chemistry*
  • Metallurgy / methods*
  • Porosity

Substances

  • Aluminum