Magainin-related peptides stimulate insulin-release and improve glucose tolerance in high fat fed mice

Protein Pept Lett. 2014;22(3):256-63. doi: 10.2174/0929866521666141229105757.

Abstract

Earlier peptidomic analysis of the skin secretion of Xenopus amieti led to the identification of orthologs of magainins and other peptides. This study investigated the degradation, in vitro insulin-releasing and acute metabolic effects of magainin-AM1 (GIKEFAHSLGKFG KAFVGGILNQ) and magainin-AM2 (GVSKILHSAGKFGKAFLGEIMKS). Plasma degradation was investigated using reversed-phase HPLC and MALDI-TOF mass spectroscopy. Insulin-releasing effects were determined using BRIN-BD11 clonal beta cells and mouse islets. Effects of magainin peptides on cytosolic enzyme lactate dehydrogenase release, membrane potential and intracellular Ca(2+) concentration were assessed using BRIN-BD11 cells while their in vivo effects on glucose tolerance and insulin release were assessed in obese, insulin-resistant Swiss National Institute of Health (NIH) mice. Both peptides were resistant to degradation by plasma enzymes in vitro for up to 8 h. Though magainin-AM1 elicited non-toxic, concentration-dependent stimulation of insulin-release from clonal BRINBD11 cells at concentrations ≥ 100nM, magainin-AM2 produced a higher stimulation of insulin-release from BRIN-BD11 cells and isolated mouse islets. Membrane depolarization and intracellular [Ca(2+)]i in BRIN-BD11 cells were significantly (P<0.05) induced by both peptides and chelation of extracellular Ca(2+), addition of diazoxide or verapamil significantly (P<0.01) reduced the insulinotropic actions of the peptides. Administration of magainin-AM2 (75 nmol/kg body weight) to high-fat fed mice significantly enhanced insulin-release (P<0.01) and improved glucose tolerance (P<0.05). These data indicate magainin-AM2 peptides have potential for development into agents for treatment of type 2 diabetes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blood Glucose / metabolism*
  • Body Weight / drug effects
  • Cells, Cultured
  • Diet, High-Fat
  • Insulin / blood*
  • Insulin-Secreting Cells / cytology
  • Insulin-Secreting Cells / drug effects*
  • Insulin-Secreting Cells / metabolism
  • Magainins / administration & dosage
  • Magainins / pharmacology*
  • Membrane Potentials / drug effects
  • Mice
  • Rats
  • Xenopus Proteins / administration & dosage
  • Xenopus Proteins / pharmacology*

Substances

  • Blood Glucose
  • Insulin
  • Magainins
  • Xenopus Proteins
  • magainin-AM1, Xenopus
  • magainin-AM2, Xenopus