Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution

J Synchrotron Radiat. 2015 Jan;22(1):180-6. doi: 10.1107/S1600577514020360. Epub 2015 Jan 1.

Abstract

X-ray scattering of biological macromolecules in solution is an increasingly popular tool for structural biology and benefits greatly from modern high-brightness synchrotron sources. The upgraded MacCHESS BioSAXS station is now located at the 49-pole wiggler beamline G1. The 20-fold improved flux over the previous beamline F2 provides higher sample throughput and autonomous X-ray scattering data collection using a unique SAXS/WAXS dual detectors configuration. This setup achieves a combined q-range from 0.007 to 0.7 Å(-1), enabling better characterization of smaller molecules, while opening opportunities for emerging wide-angle scattering methods. In addition, a facility upgrade of the positron storage ring to continuous top-up mode has improved beam stability and eliminated beam drift over the course of typical BioSAXS experiments. Single exposure times have been reduced to 2 s for 3.560 mg ml(-1) lysozyme with an average quality factor I/σ of 20 in the Guinier region. A novel disposable plastic sample cell design that incorporates lower background X-ray window material provides users with a more pristine sample environment than previously available. Systematic comparisons of common X-ray window materials bonded to the cell have also been extended to the wide-angle regime, offering new insight into best choices for various q-space ranges. In addition, a quantitative assessment of signal-to-noise levels has been performed on the station to allow users to estimate necessary exposure times for obtaining usable signals in the Guinier regime. Users also have access to a new BioSAXS sample preparation laboratory which houses essential wet-chemistry equipment and biophysical instrumentation. User experiments at the upgraded BioSAXS station have been on-going since commissioning of the beamline in Summer 2013. A planned upgrade of the G1 insertion device to an undulator for the Winter 2014 cycle is expected to further improve flux by an order of magnitude.

Keywords: MacCHESS; SAXS; high throughput.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Aldose-Ketose Isomerases / chemistry
  • Animals
  • Computers
  • Cooperative Behavior
  • Equipment Design
  • Forms and Records Control
  • Molecular Structure*
  • Muramidase / chemistry
  • New York
  • Robotics
  • Scattering, Small Angle*
  • Software
  • Solutions
  • Specimen Handling
  • Synchrotrons / instrumentation*
  • Temperature
  • X-Ray Diffraction / instrumentation*
  • X-Ray Diffraction / methods

Substances

  • Solutions
  • Muramidase
  • Aldose-Ketose Isomerases
  • xylose isomerase